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On the total variation of a third-order
semi-discrete central scheme for 1D
conservation laws

Mehdi Dehghan and Rooholah Jazlanian

Abstract

In this work, we present a third-order, semi-discrete, central-upwind scheme for computing approximate solutions of

1D systems of conservation laws. We combine the third-order CWENO reconstruction proposed in Levy et al.,

the semi-discrete central-upwind numerical flux proposed in Kurganov et al. and the third-order TVD

Runge–Kutta method, proposed in Shu and Osher. We are interested in the behavior of the total variation of the

approximate solution obtained with this scheme. Also we test our scheme on both scalar and gas dynamics problems.

We observe that the total variation of computed solutions is close to the total variation of the exact solution or a

reference solution.

Keywords

High-resolution, central schemes, hyperbolic conservation laws, total variation

Received: 1 November 2009; accepted: 24 June 2010

1. Introduction

High-resolution methods for solving systems of conser-
vation laws

ut þ f ðuÞx ¼ 0 u 2 R
d, d � 1 ð1Þ

have attracted much attention over the past decade.
Analytical solutions are available only in a very few
special cases and numerical methods must be used in
practical applications (Dehghan, 2005, 2006). There are
two types of such methods, namely upwind schemes
and central schemes.

In this work, we focus on the class of central
schemes, i.e. schemes that can be implemented with
very little knowledge of the structure of the system of
conservation laws. Since the central schemes are
Riemann-solver-free, these schemes are simple to imple-
ment, and can be extended to multi-dimensional
problems.

Central-upwind schemes are semi-discrete variants
of central schemes that have improved efficiency

and less dissipation than fully-discrete central
schemes. A second-order semi-discrete central
scheme was introduced by Kurganov and Tadmor
(2000). The basic idea in the construction of the
second-order semi-discrete scheme was to use more
accurate information about the local speed of propa-
gation of the discontinuities. Modifications to this
scheme, based on the one-sided local speed of propa-
gation, were proposed by Kurganov et al. (2001).
These schemes for the evolution step employ
integration over Riemann fans and do not require
a Riemann solver and characteristic decomposition,
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so they are Godunov-type central schemes. Also,
they have an upwind nature, since one-sided
information is used to estimate the width of the
Riemann fans.

In this work we use the numerical flux of Kurganov
et al. (2001), which we refer to as the KNP flux.
We combine the KNP flux with the third-order central
weighted essentially non-oscillatory (CWENO) recon-
struction of Levy et al. (2000b), and the third-order
TVD Runge–Kutta method, proposed in Shu and
Osher (1988).

In this paper, we investigate the question of the con-
vergence of the semi-discrete central scheme for
approximating solutions of hyperbolic systems of con-
servation laws. We numerically test the behavior of the
total variation (TV), TV(u)9

P
j Wujþ1� ujW, of the dis-

crete solution.
A scheme is called total variation bounded (TVB)

in 0� t�T, if TV(un)�K for fixed positive K (constant
K depends only on the initial condition), and 8n, �t s.t.
n�t�T. If TV(unþ1)�TV(un) then the scheme is
total variation diminishing (TVD). If a scheme is
TVB, then there exists a convergent subsequence in
L1
LOC to a weak solution of equation 1, which turns

into strong convergence if an additional entropy
condition is satisfied (see LeVeque, 1992, for more
details). Our numerical results suggest that our
scheme is TVB, which provides evidence of the conver-
gence of the scheme.

This paper is organized as follows: in Section 2
we present our third-order central-upwind scheme.
For that, we give a brief overview of the
derivation of the KNP flux in Section 2.1. The third-
order CWENO reconstruction is summarized in
Section 2.2. Next, in Section 3 we present the
results of a number of numerical tests of our scheme.
We test both the accuracy and the evolution of
the total variation of the resulting approximations.
Finally, Section 4 ends this paper with a brief
summary.

2. Third-order semi-discrete scheme

In this section we give a brief overview of the compo-
nents that we use to construct our third-order central-
upwind scheme: the numerical flux from Kurganov
et al. (2001) and the reconstruction from Levy et al.
(2000b). The problem is required to be hyperbolic, i.e.
the flux Jacobian

A ¼
@f ðuÞ

@u
ð2Þ

is required to have both real eigenvalues,
l1� l2� ��� � lN, and a complete set of eigenvectors.
If the real eigenvalues are distinct then the problem is
strictly hyperbolic and a complete set of eigenvectors is
guaranteed.

2.1. The KNP flux

Consider a uniform spatial grid where the cell
Ij ¼ ½xj�1

2
, xjþ1

2
� has a width, h. Let the approximation

to the cell average of u on Ij be given by �unj ¼
1
h

R
Ij
uðx, tnÞdx. We assume that the cell averages f �unj g

are known at time tn. Let �j(x) be the characteristic
function of the cell Ij. First, from f �u

n
j g, we reconstruct

a piecewise polynomial ũ(x, tn)9
P

j Pj(x)�j(x). Here,
Pj(x) are polynomials of a suitable degree. We denote
the point-values of ũ(x, tn) at the interfaces of the cell Ij
by uþ

jþ1
2

:¼ Pjþ1ðxjþ1
2
Þ and u�

jþ1
2

:¼ Pjðxjþ1
2
Þ. The left- and

right-sided local speeds of propagation of information
from the discontinuities at the cell interfaces, a1

jþ1
2

and
aN
jþ1

2

, are estimated by

aN
jþ1

2
¼ max lN

@f

@u
u�
jþ1

2

� �� �
, lN

@f

@u
uþ
jþ1

2

� �� �
, 0

� �
ð3Þ

and

a1jþ1
2
¼ min l1

@f

@u
u�jþ1

2

� �� �
, l1

@f

@u
uþ
jþ1

2

� �� �
, 0

� �
ð4Þ

These local speeds of propagation are used to deter-
mine intervals for averaging that contain the Riemann
fans from the cell interfaces. For more details see
Kurganov et al. (2001).

One-dimensional grid updates of the average con-
served variables are calculated using a conservative
update as

d

dt
�uj ðtÞ ¼ �

Hjþ1
2
�Hj�1

2

h
ð5Þ

The numerical flux (KNP) in equation 5 is given by

Hjþ1
2
¼

aN
jþ1

2

f u�
jþ1

2

� �
� a1

jþ1
2

f uþ
jþ1

2

� �
aN
jþ1

2

� a1
jþ1

2

þ
aN
jþ1

2

a1
jþ1

2

aN
jþ1

2

� a1
jþ1

2

uþ
jþ1

2

� u�
jþ1

2

� �
ð6Þ

The accuracy of this scheme is determined by the accu-
racy of the reconstructions and the ODE solver.
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2.2. The third-order CWENO reconstruction

In the framework of upwind schemes, high-order essen-
tially non-oscillatory (ENO) reconstructions were pro-
posed in Harten et al. (1987). ENO schemes choose the
stencil that provides the least oscillatory reconstruction.
Weighted essentially non-oscillatory (WENO) recon-
structions were described by Liu et al. (1994). Later,
Jiang and Shu (1996) described improved smoothness
indicators and efficient implementations of WENO
schemes. In Bianco et al. (1999) high-order ENO recon-
structions were first combined with central schemes. A
new central WENO (CWENO) reconstruction for 1D
hyperbolic conservation laws was proposed by Levy et
al. (1999).

In each cell, Ij, we use a quadratic polynomial as a
convex combination of three polynomials PL(x), PR(x)
and PC(x),

Pj ðxÞ ¼ wLPLðxÞ þ wCPCðxÞ þ wRPRðxÞ,

wi � 0 8i 2 fL,C,Rg,
X
i

wi ¼ 1 ð7Þ

The linear functions, PR(x) and PL(x), are uniquely
determined by requiring them to conserve the one-
sided cell-averages ( �unj , �unjþ1 and �unj , �unj�1, respectively) as

PRðxÞ ¼ �unj þ
�unjþ1 � �unj

h
ðx� xj Þ,PLðxÞ

¼ �unj þ
�unj � �unj�1

h
ðx� xj Þ ð8Þ

Also, PC(x) is chosen such that,

PoptðxÞ ¼ CLPLðxÞ þ CRPRðxÞ þ ð1� CL � CRÞPCðxÞ

ð9Þ

with constants Ci’s. Here, PoptðxÞ ¼ unj þ u0j ðx� xj Þþ
1
2 u
00
j ðx� xj Þ

2, is the parabola polynomial that interpo-
lates the data, �unj�1, �unj and �unjþ1, in the sense of cell-
averages to enforce conservation

Z x
jþlþ1

2

x
jþl�1

2

PoptðxÞdx ¼ h �unjþl, l ¼ �1, 0, 1

These conditions determine Popt(x) uniquely. In Levy
et al. (2000b) it was shown that every symmetric selec-
tion of the constants Ci’s in equation 9 will provide the
desired third-order accuracy. In particular by taking
CL¼CR¼ 1/4, we obtain

PCðxÞ ¼ �unj �
1

12
ð �unjþ1 � 2 �unj þ �unj�1Þ

þ
�unjþ1 � �unj�1

2h
ðx� xj Þ

þ
�unjþ1 � 2 �unj þ �unj�1

h2
ðx� xj Þ

2

As is said in Levy et al. (2000b), in smooth regions, the
coefficients, wi, of the convex combination in equation 7
are chosen to guarantee the maximum order of accuracy
(in this particular case, order three), but in the presence
of a discontinuity they are automatically switched to the
best one-sided stencil (which generates the least
oscillatory reconstruction). The weights are taken as

wi ¼
�iP
m �m

, �i ¼
Ci

ð�þ ISiÞ
2
, i,m 2 fL,C,Rg

The constant, e, guarantees that the denominator does
not vanish and is taken as e¼ 10�6. Also, the smooth-
ness indicators, ISi, are defined as

ISi ¼
X2
l¼1

Z x
jþ1

2

x
j�1

2

h2l�1ðP
ðl Þ
i ðxÞÞ

2dx

A direct computation then results in

ISL ¼ �unj � �unj�1

� �2
, ISR ¼ �unjþ1 � �unj

� �2

ISC ¼
13

3
�unjþ1 � 2 �unj þ �unj�1

� �2
þ
1

4
�unjþ1 � �unj�1

� �2

We refer the interested reader to references Bryson
and Levy (2006), Bryson and Levy (2003), Kurganov
and Levy (2000), Kurganov and Petrova (2001), Levy
et al. (2000a), Nessyahu and Tadmor (1990), Peer et al.
(2008), for more research works on one-dimensional
conservation laws.

3. Numerical results

In this section, we describe the results of numerical
examples for various test problems. We abbreviate
our third-order semi-discrete scheme by SDS3, also
we compare results with CCWENO (Compact Central
Weighted Essentially Non-oscillatory) (Levy et al.,
2000b). We test the accuracy of the scheme on
problems with smooth solutions and solve various
equations that admit non-smooth solutions. We also
test the TV of the numerical experiments. To integrate
equation 5 forward in time, we use the third-order TVD
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Runge–Kutta method. In all of the numerical experi-
ments below, the Courant-Friedrich-Levy (CFL)
number is equal to 0.425.

3.1. Scalar test problems

We first consider the scalar linear hyperbolic equation

ut þ ux ¼ 0, x 2 ½0, 2��

augmented with the smooth initial data, u(x, 0)¼ sin(x),
and periodic boundary conditions. The relative L1� and
L1� norms of the errors are shown in Table 1.

Note that the TV of the exact solution equals 4,
and remains constant along the evolution. Figure 1
presents the TV of the semi-discrete approximate solu-
tion, which is computed using the point-values obtained
with the CWENO reconstruction from the cell-
averages.

Next, we consider the initial boundary value pro-
blem (IBVP) for the inviscid Burgers’ equation

ut þ
u2

2

� �
x

¼ 0, uðx, 0Þ ¼ 2� cosðxÞ, x 2 ½0, 2��

with periodic boundary conditions. We test the accu-
racy at T¼ 0.5 (before shock formation), and the
results are shown in Table 2.

Figure 2 shows the solution after shock formation at
T¼ 3, and the change in the TV of the approximation
for different cells compared with the TV of the exact
solution. The TVs of the approximate solutions have
the same behavior as the TV of the exact solution. The
values of the TV of the approximate solutions never
increase above the exact TV. We also observe that the
TVs of the approximate solutions are different from
that of the exact solution for two reasons: (a) the TV
is computed on a discrete set of points, (b) the discrete
values of the numerical solution are not exact.

Our next example is Burgers’ equation on the same
domain with initial data, u(x, 0)¼ 2þ cos(x)� cos(2x).
This example develops two shocks, which eventually
merge. Figure 3 shows the solution after shock forma-
tion at T¼ 1.2, and the change in the TV of the approx-
imation for different cells compared with the TV of the
exact solution.

3.2. Systems of conservation laws

In this subsection we use the third-order semi-discrete
scheme to solve hyperbolic systems of conservation
laws. In particular, we solve the Euler equations of
gas dynamics for a polytropic gas

@

@t

�

�q

E

0
B@

1
CAþ @

@x

�q

�q2þ p

qðEþ pÞ

0
B@

1
CA¼ 0, p¼ ð� � 1ÞðE�

1

2
�q2Þ,

� ¼ 1:4 ð10Þ

We first use third-order semi-discrete scheme for the
Sod problem proposed in Sod (1978) on the domain
[0, 1] with initial data

0 2 4 6 8 10

3.88

3.9

3.92

3.94

3.96

3.98

4

N=100
N=200
N=400
N=800

Figure 1. TV of the solution to a linear advection problem at

T¼ 10.

Table 2. Errors and orders of convergence for Burgers’ equa-

tion at T¼ 0.5

N L1 error L1 order L1 error L1 order

40 5.5300(-2) — 6.1100(-2) —

80 2.0900(-2) 1.4038 1.6400(-2) 1.8975

160 6.3000(-3) 1.7301 3.5000(-3) 2.2283

320 6.2883(-4) 3.3246 1.7548(-4) 4.3180

640 3.3923(-5) 4.2123 9.9539(-6) 4.1399

1280 1.1470(-6) 4.8863 1.3475(-6) 2.8850

Table 1. Errors and orders of convergence for advection

equation at T¼ 1

N L1 error L1 order L1 error L1 order

40 4.0700(-2) — 2.5700(-2) —

80 1.1300(-2) 1.8487 1.0900(-2) 1.2374

160 2.2000(-3) 2.3607 3.4000(-3) 1.6807

320 1.7945(-4) 3.6158 4.7165(-4) 2.8497

640 9.2396(-6) 4.2796 2.2673(-5) 4.3787

1280 5.3421(-7) 4.1124 7.2460(-7) 4.9676
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uðx, 0Þ ¼
ð1, 0, 2:5ÞT 0 � x5 0:5

ð0:125, 0, 0:25ÞT 0:5 � x � 1

8<
:

Figure 4 shows the performance of SDS3 and
CCWENO at T¼ 0.16 with N¼ 200. Also, Figure 4
shows the TV behavior of the approximation, compared
with a reference solution. We observe that the shock and
the contact discontinuity are well captured at low resolu-
tion. We also see that the TVs of the approximate solutions
are initially greater than that of the reference solution, but
converge to the TV of the reference solution over time.

Next, we apply SDS3 and CCWENO to the Lax
problem. In this test, which is taken from Lax (1954),
we solve equation 10 with the initial condition

uðx, 0Þ ¼

ð0:445, 0:31061, 8:92840289ÞT 0 � x5 0:5,

ð0:5, 0, 1:4275ÞT 0:5 � x � 1,

8><
>:

x 2 ½0, 1�

For this more difficult shock tube problem, Figure 5
shows the performance of our scheme and CCWENO
at T¼ 0.16 with N¼ 200. Similar to Sod’s test problem,
the shock and the contact discontinuity are well

0 1 2 3 4 5 6 7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
EXACT
N=100

0 1 2 3 4 5 6 7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
EXACT
N=100

0 0.5 1 1.5 2 2.5 3
2.8

3

3.2

3.4

3.6

3.8

4

4.2

EXACT

N=100

N=200

N=400

N=800

Figure 2. Results for the Burgers’ equation. Top: the solution after shock formation at T¼ 3 (left: SDS3, right: CCWENO). Bottom:

the change in the TV of the approximation for different cells (left to right) compared with the TV of the exact solution.
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
EXACT
N=100

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
EXACT
N=100

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9

EXACT
N=100
N=200
N=400
N=800

Figure 3. Results for the 2-shock Burgers’ problem. Top: the solution after shock formation at T¼ 1.2 (left: SDS3, right: CCWENO).

Bottom: the change in the TV of the approximation for different cells (left to right) compared with the TV of the exact solution.
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0 0.2 0.4 0.6 0.8 1
0.1
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0.3
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N=200

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Reference
N=200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Reference

N=100

N=200

N=400

N=800

Figure 4. Results for the Sod problem. Top: the density profile at T¼ 0.16 (left: SDS3, right: CCWENO). Bottom: the change in the

TV of the approximation for different cells compared with the TV of a reference solution.
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captured at low resolution, but there are significant
oscillations between the contact discontinuity and
the shock for N¼ 100. The high-order schemes clearly
exhibit small amplitude spurious oscillations in this
test problem. These oscillations are of the ENO type,
in the sense that their amplitude decreases as the grid
is refined. We see that the TVs of the approximate
solutions are initially greater than that of the reference
solution, but similar to the Sod problem, converge to
the TV of the reference solution over time. It is inter-
esting, however, that the over-shoot of the TV at early
times does not seem to depend on the mesh resolution.

For the next example, which is taken from
Woodward and Colella (1984), we solve the Euler equa-
tions 10 with a shock interaction problem with solid
wall boundary conditions, applied to both ends given
by the initial data

uðx, 0Þ ¼

ð1, 0, 2500ÞT 0 � x5 0:1

ð1, 0, 0:025ÞT 0:1 � x5 0:9

ð1, 0, 250ÞT 0:9 � x � 1

8>>>><
>>>>:

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Reference
N=200

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Reference
N= 200 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

8

10

12

14

16

18

Reference

N=100

N=200

N=400

N=800

Figure 5. Results for the Lax problem. Top: the density profile at T¼ 0.16 (left: SDS3, right: CCWENO). Bottom: the change in the

TV of the approximation for different cells compared with the TV of a reference solution.
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on the domain x2 [0, 1]. We display the numerical
results of the density, velocity and pressure profile of
this complex problem in Figure 6. The results are
with N¼ 400 at T¼ 0.038, and we get a reference
solution using 4000 cells. We observe some numer-
ical oscillations. Figure 6 also shows the TV beha-
vior of the approximation, compared with the
reference solution. We also see that the TVs of
the numerical solutions converge to the TV of the
reference solution, but do not seem to converge over
time. This is not surprising since this example con-
tains sharp peaks that will not be resolved for coarse
meshes.

For the final test, which is taken from Shu and
Osher (1988), we solve the Euler equations 10 with a
moving Mach ¼ 3 shock interacting with sine waves in
density, i.e.

The flow contains physical oscillations that have to
be resolved by the numerical method. We compute the
solution at T¼ 1.8. We show the numerical approxima-
tions of the density profile in Figure 7 along with a
reference solution computed with 5000 cells. Figure 7
also displays the TV behavior of the approximation,
compared with the reference solution. Numerical
approximations of the density profile show the
performance of the scheme in smooth regions and the
ability to capture shocks. We also observe that the TV
of our approximations converges to that of the
reference solution.

4. Conclusion

In this work, we have introduced a third-order, semi-
discrete, central-upwind scheme for computing

uðx, 0Þ ¼
ð3:85714, 10:1418096304, 39:16655928489427ÞT �5 � x5 �4

ð1þ 0:2 sinð5xÞ, 0, 2:5ÞT �4 � x � 5

8<
:

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
Reference
N=400

0 0.2 0.4 0.6 0.8 1
–2

0

2

4

6

8

10

12

14

16
Reference
N=400 

0 0.2 0.4 0.6 0.8 1
0
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100
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200
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300

350

400

450
Reference
N=400

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
1000

2000

3000

4000

5000

6000

7000

Reference
N=100
N=200
N=400
N=800

Figure 6. Results for the Woodward–Colella problem. Top left: the density profile and right: the velocity profile at T¼ 0.038.

Bottom left: the pressure profile at T¼ 0.038 and right: the change in the TV of the approximation for different cells compared with

the TV of a reference solution.
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approximate solutions of 1D systems of conservation
laws. First, we would like to comment that this scheme
can be easily generalized to 2D problems. Also, we
checked the behavior of the TV of the approximate solu-
tion obtained with this scheme and observed that the TV
of a numerical solution for the third-order semi-discrete
scheme is bounded for the test cases considered. In parti-
cular, we applied this scheme to solve Euler equations of
gas dynamics. We observed that the TV approaches the
TV of the reference solution in various ways for various
cases. For example, in the Shock-Entrop problem (Shu
andOsher, 1988) it is monotonewhile in theWoodward–
Colella problem it is not.
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